Which 100G QSFP are Capable of Supporting Link Distances over 10km?

Picture of Harper Ross

Harper Ross

Answered on 5:55 am

100GBASE-LR4 QSFP28, which can support up to 10km over duplex single-mode fiber (SMF) with LC connectors. This transceiver uses four wavelengths of 1310nm LAN WDM to achieve a 100G data rate. It is compliant with IEEE 802.3ba 100GBASE-LR4 and QSFP28 MSA standards.

100GBASE-ER4L QSFP28, which can support up to 25km or 40km over duplex SMF with LC connectors, depending on the product specifications. This transceiver also uses four wavelengths of 1310nm LAN WDM to achieve 100G data rate. It is compliant with IEEE 802.3ba 100GBASE-ER4 and QSFP28 MSA standards.

100GBASE-ZR4 QSFP28, which can support up to 80km over duplex SMF with LC connectors. This transceiver also uses four wavelengths of 1310nm LAN WDM to achieve 100G data rate. It is compliant with IEEE 802.3ba 100GBASE-ZR4 and QSFP28 MSA standards.

People Also Ask

Comprehensive Guide to AI Server Liquid Cooling Cold Plate Development, Manufacturing, Assembly, and Testing

In the rapidly evolving world of AI servers and high-performance computing, effective thermal management is critical. Liquid cooling cold plates have emerged as a superior solution for dissipating heat from high-power processors in data centers and cloud environments. This in-depth guide covers everything from cold plate manufacturing and assembly to development requirements

Dual-Plane and Multi-Plane Networking in AI Computing Centers

In the previous article, we discussed the differences between Scale-Out and Scale-Up. Scale-Up refers to vertical scaling by increasing the number of GPU/NPU cards within a single node to enhance individual node performance. Scale-Out, on the other hand, involves horizontal scaling by adding more nodes to expand the overall network scale, enabling

What is a Silicon Photonics Optical Module?

In the rapidly evolving world of data communication and high-performance computing, silicon photonics optical modules are emerging as a groundbreaking technology. Combining the maturity of silicon semiconductor processes with advanced photonics, these modules promise higher speeds, lower power consumption, and reduced costs. This in-depth guide explores the fundamentals, principles, advantages, industry

Key Design Principles for AI Clusters: Scale, Efficiency, and Flexibility

In the era of trillion-parameter AI models, building high-performance AI clusters has become a core competitive advantage for cloud providers and AI enterprises. This article deeply analyzes the unique network requirements of AI workloads, compares architectural differences between AI clusters and traditional data centers, and introduces two mainstream network design

Related Articles

800g sr8 and 400g sr4

800G SR8 and 400G SR4 Optical Transceiver Modules Compatibility and Interconnection Test Report

Version Change Log Writer V0 Sample Test Cassie Test Purpose Test Objects:800G OSFP SR8/400G OSFP SR4/400G Q112 SR4. By conducting corresponding tests, the test parameters meet the relevant industry standards, and the test modules can be normally used for Nvidia (Mellanox) MQM9790 switch, Nvidia (Mellanox) ConnectX-7 network card and Nvidia (Mellanox) BlueField-3, laying a foundation for

Read More »
liquid cooling

Comprehensive Guide to AI Server Liquid Cooling Cold Plate Development, Manufacturing, Assembly, and Testing

In the rapidly evolving world of AI servers and high-performance computing, effective thermal management is critical. Liquid cooling cold plates have emerged as a superior solution for dissipating heat from high-power processors in data centers and cloud environments. This in-depth guide covers everything from cold plate manufacturing and assembly to development requirements

Read More »
multi-plane

Dual-Plane and Multi-Plane Networking in AI Computing Centers

In the previous article, we discussed the differences between Scale-Out and Scale-Up. Scale-Up refers to vertical scaling by increasing the number of GPU/NPU cards within a single node to enhance individual node performance. Scale-Out, on the other hand, involves horizontal scaling by adding more nodes to expand the overall network scale, enabling

Read More »
800G Silicon Photonics Optical Modules

What is a Silicon Photonics Optical Module?

In the rapidly evolving world of data communication and high-performance computing, silicon photonics optical modules are emerging as a groundbreaking technology. Combining the maturity of silicon semiconductor processes with advanced photonics, these modules promise higher speeds, lower power consumption, and reduced costs. This in-depth guide explores the fundamentals, principles, advantages, industry

Read More »
ai cluster

Key Design Principles for AI Clusters: Scale, Efficiency, and Flexibility

In the era of trillion-parameter AI models, building high-performance AI clusters has become a core competitive advantage for cloud providers and AI enterprises. This article deeply analyzes the unique network requirements of AI workloads, compares architectural differences between AI clusters and traditional data centers, and introduces two mainstream network design

Read More »
Scroll to Top